Direct PSF estimation using a random noise target

نویسندگان

  • Johannes Brauers
  • Claude Seiler
  • Til Aach
چکیده

Conventional point spread function (PSF) measurement methods often use parametric models for the estimation of the PSF. This limits the shape of the PSF to a specific form provided by the model. However, there are unconventional imaging systems like multispectral cameras with optical bandpass filters, which produce an, e.g., unsymmetric PSF. To estimate such PSFs we have developed a new measurement method utilizing a random noise test target with markers: After acquisition of this target, a synthetic prototype of the test target is geometrically transformed to match the acquired image with respect to its geometric alignment. This allows us to estimate the PSF by direct comparison between prototype and image. The noise target allows us to evaluate all frequencies due to the approximately “white” spectrum of the test target – we are not limited to a specifically shaped PSF. The registration of the prototype pattern gives us the opportunity to take the specific spectrum into account and not just a “white” spectrum, which might be a weak assumption in small image regions. Based on the PSF measurement, we perform a deconvolution. We present comprehensive results for the PSF estimation using our multispectral camera and provide deconvolution results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture-based measurement of spatial frequency response using the dead leaves target: extensions, and application to real camera systems

Conventional point spread function (PSF) measurement methods often use parametric models for the estimation of the PSF. This limits the shape of the PSF to a specific form provided by the model. However, there are unconventional imaging systems like multispectral cameras with optical bandpass filters, which produce an ab-normal, e.g., unsymmetric PSF. To estimate such PSFs we have developed a n...

متن کامل

TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...

متن کامل

Non-parametric Sub-pixel Local Point Spread Function Estimation

This work presents an algorithm for the local subpixel estimation of the Point Spread Function (PSF) that models the intrinsic camera blur. For this purpose, the Bernoulli(0.5) random noise calibration pattern introduced in a previous article [1] is used. This leads to a well-posed near-optimal accurate estimation. First the pattern position and its illumination conditions are accurately estima...

متن کامل

Improving the Speckle Noise Attenuation of Simultaneous Spectral Differential Imaging with a Focal Plane Holographic Diffuser

Direct exoplanet detection is limited by speckle noise in the point spread function (PSF) of the central star. This noise can be reduced by subtracting PSF images obtained simultaneously in adjacent narrow spectral bands using a multi-channel camera (MCC), but only to a limit imposed by differential optical aberrations in the MCC. To alleviate this problem, we suggest the introduction of a holo...

متن کامل

Fast Motion Deblurring Using Sensor-Aided Motion Trajectory Estimation

This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010